

Lebanon Municipal Service Emergency Project (LMSEP)

The Baalbeck Solar Pumping Systems Project Bekaa PVSL Project

Reem Irany Lebanese Center for Energy Conservation (LCEC)

September 28th, 2018

The National Renewable Energy Action Plan for the Republic of Lebanon 2016-2020

www.lcec.org.lb

Table of contents

Foreword		5
Admowledgements		6
Table of contents		10
List of tables		13
List of figures		15
Abbreviations		17
Introduction		21
Part A - Current situation, trends, and objectives		23
Chapter 1 - The evolvement of renewable energy i	in Lebanon	25
1.1 A bit of history		25
1.2 The year 2010: a turning point		26
1.3 "Policy Paper for the Electricity Sector" in Lebar	non	26
1.4 The National Energy Efficiency Action Plan for I	Lebanon (2011–2015)	28

Chapter 5 - Solar photovoltaic farms

5.1 Global, regional, and national technology outlook

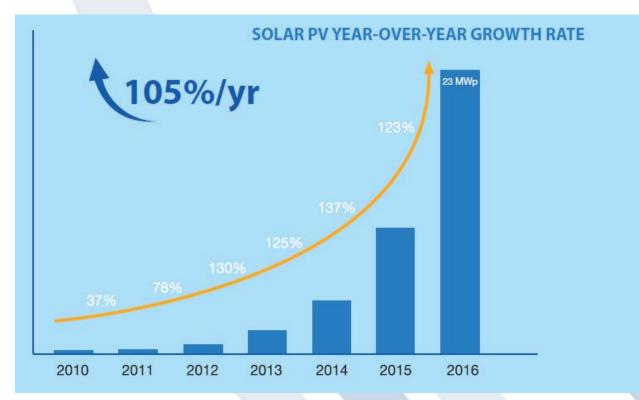
5.2 Potential for photovoltaic farms in Lebanon

1	
Part B - Development of renewable energy technologies	45
Chapter 4 - Wind energy	47
4.1 Global, regional, and national technology outlook	47
4.2 Wind potential in Lebanon	48
4.3 Financial appraisal of wind power in Lebanon	50
4.4 Target for wind energy	52
4.5 Needed budget to achieve the 2020 target for wind energy	53
4.6 The way forward	53
Chapter 5 - Solar photovoltaic farms	55
5.1 Global, regional, and national technology outlook	56
5.2 Potential for photogoltaic farms in Lehanon	57
5.3 Financial appraisal of solar photovoltaic technology	59
5.4 Target for large scale photovoltaic energy	60
5.5 Needed budget to achieve the 2020 target for solar photovoltaic	61
5.6 The way forward	62
Chapter 6 - Solar photovoltaic distributed generation	65
6.1 Solar photovoltaic distributed energy resources	65

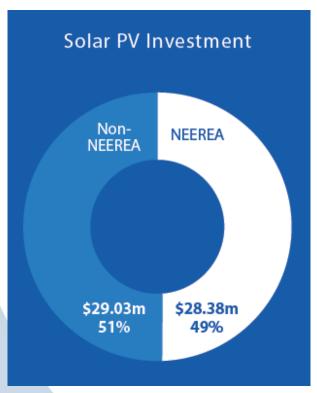
The National Renewable Energy Action Plan for the Republic of Lebanon 2016-2020

www.lcec.org.lb

Table of contents

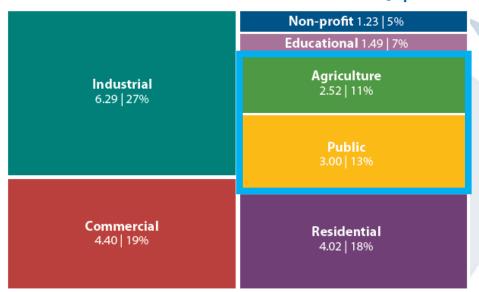

Foreword	5
Admowledgements	6
Table of contents	1
List of tables	1
List of figures	1
Abbreviations	1
Introduction	2
Part A - Current situation, trends, and objectives	2
Chapter 1 - The evolvement of renewable energy in Lebanon	2
1.1 A bit of history	2
1.2 The year 2010: a turning point	2
1.3 "Policy Paper for the Electricity Sector" in Lebanon	2

Chapter 6 - Solar photovoltaic distributed generation

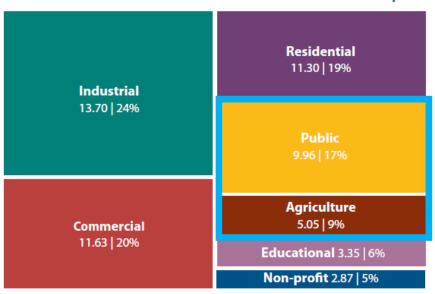

6.1 Solar photovoltaic distributed energy resources

2.1 Transcript Caragy projections for following ocyonia	
3.2 National renewable energy targets	42
3.3 Sectorial energy growth paths	42
3.4 Three scenarios for development	45
Part B - Development of renewable energy technologies	45
Chapter 4 - Wind energy	47
4.1 Global, regional, and national technology outlook	47
4.2 Wind potential in Lebanon	48
4.3 Financial appraisal of wind power in Lebanon	50
4.4 Target for wind energy	52
4.5 Needed budget to achieve the 2020 target for wind energy	53
4.6 The way forward	53
Chapter 5 - Solar photovoltaic farms	55
5.1 Global, regional, and national technology outlook	56
5.2 Potential for photovoltaic farms in Lebanon	57
5.3 Financial appraisal of solar photovoltaic technology	59
5.4 Target for large scale photovoltaic energy	60
5.5 Needed budget to achieve the 2020 target for solar photovoltaic	61
5.6 The way forward	62
Chapter 6 - Solar photovoltaic distributed generation	65
6.1 Solar photovoltaic distributed energy resources	65

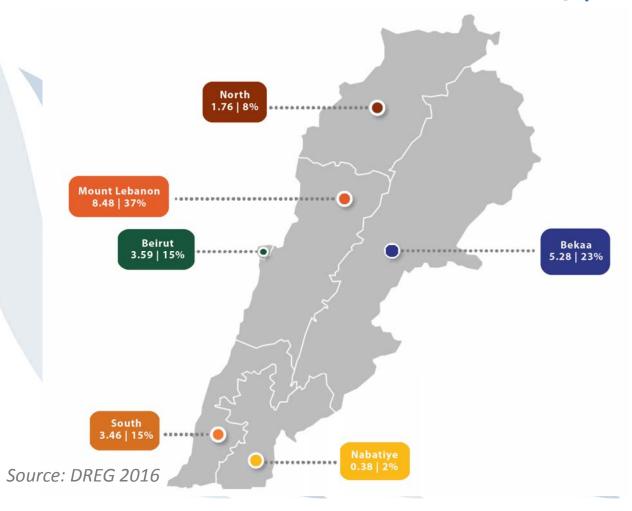
Solar photovoltaic distributed generation	Pessimistic			Realistic			Optimistic		
	MW	MWh	ktoe	MW	MWh	ktoe	MW	MWh	ktoe
Industrial sector	10	16,500	3.6	30	49,500	10.7	40	66,000	14.3
Commercial sector	25	41,250	8.9	40	66,000	14.3	60	99,000	21.4
Agriculture sector	5	8,250	1.8	10	16,500	3.6	20	33,000	7.1
Residential sector	5	8,250	1.8	10	16,500	3.6	20	33,000	7.1
Others (public, municipalities)	2	3,300	0.7	5	8,250	1.8	20	33,000	7.1
Public street lighting	3	4,950	1.1	5	8,250	1.8	10	16,500	3.6
TOTAL	50	82,500	17.8	100	165,000	35.6	170	280,500	60.6



Source: DREG 2016


Source: DREG 2016

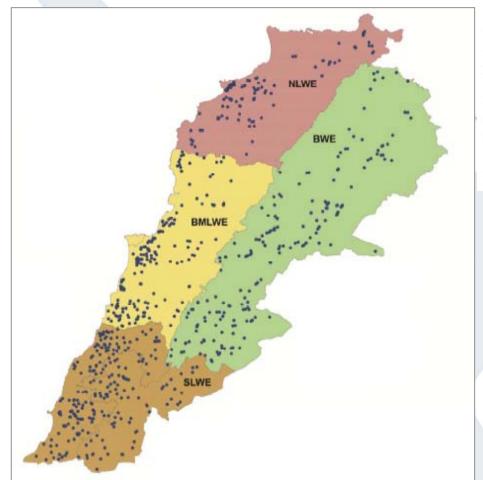
SOLAR PV CAPACITY BY SECTOR (MWp | %)


Source: DREG 2016

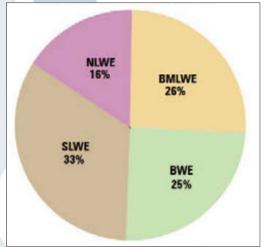
SOLAR PV CAPACITY BY INVESTMENT (\$m | %)

Source: DREG 2016

SOLAR PV CAPACITY BY GOVERNORATE (MWp | %)



Background of the Project


- Water supply has always been a challenge in the Northern Bekaa area
- Increase in water demand do to Syrian refugee influx (drinkable, domestic, and irrigation)
- Bekaa area is prone to electricity blackouts safety and security require street lighting.
- The use of generators by municipalities for water pumping during outages motivates local authorities to shift to green energy production via solar PV systems
- The Lebanon Municipal Service Emergency Project (LMSEP) is an initiative launched and funded by the World Bank (WB) and managed by CDR.
- The main objective is to ease the load on the municipal services, areas, and communities hosting Syrian refugees.
- LCEC is acting as the technical consultant for this project.

Background of the Project |

Distribution of Wells and Total Extraction per Establishment

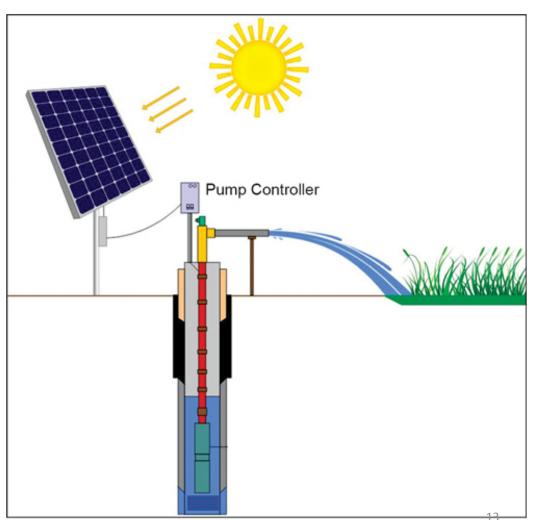
ESTABLISHMENT	TOTAL NO. OF WELLS SURVEYED IN THE FIELD	TOTAL EXTRACTION (rate m³/day)	TOTAL EXTRACTION RATE (million m³/year)		
BMLWE	218	193,642	71		
BWE	209	90,422	33		
SLWE	277	309,128	113		
NLWE	137	88,383	32		
Total	841	681,576	249		

Percentage Distribution of Wells per Establishment

Source: Assessment of groundwater resources in Lebanon publication 2014

What is Solar Pumping?

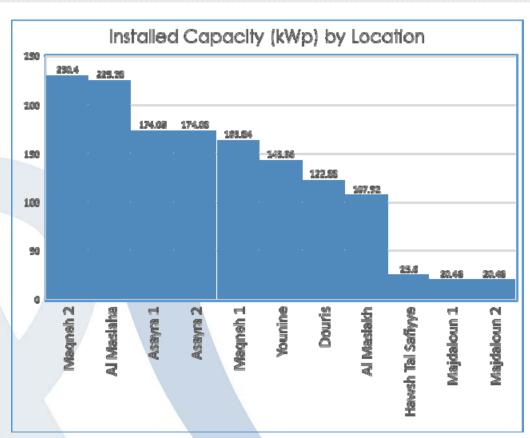
What is Solar Pumping?



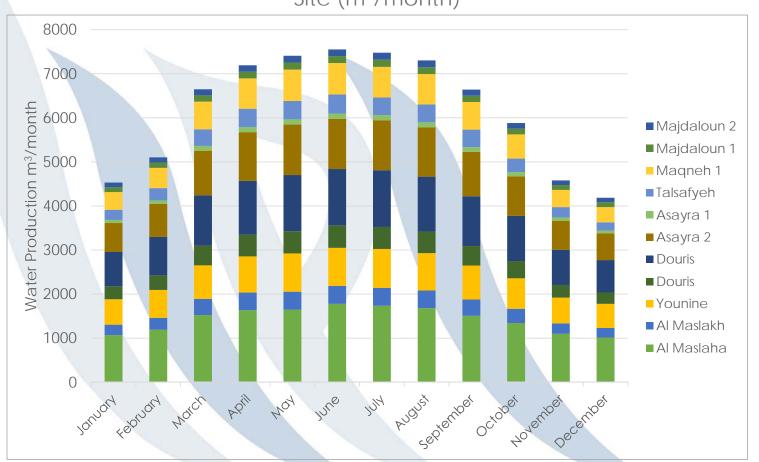
What is Solar Pumping?

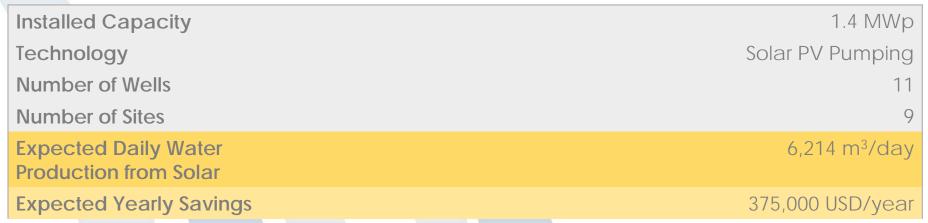
Components:

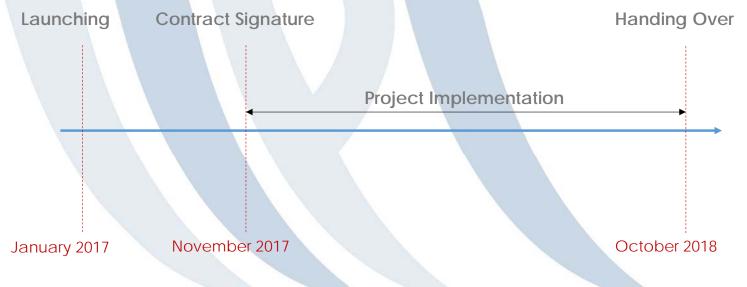
- PV Array (Inclination/Orientation)
- Steel Structure (galvanized steel)
- VFD Inverters
- DC/AC Interconnections
- Protection Devices
- Earthing
- Lightning
- Remote Monitoring
- Weather Station
- Sensors: Water Level Sensor, Flow Meter
- Fence
- Security Cameras
- Safety Signs



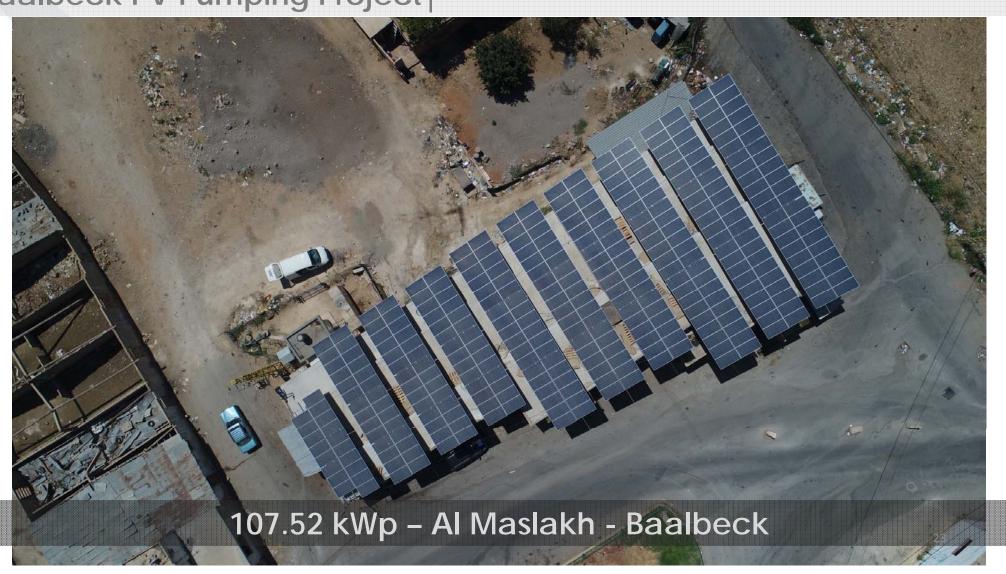
Solar PV System to drive the **submersible water pumps** in **11 wells** within the Union of Municipalities of Baalbeck and Surrounding Communities

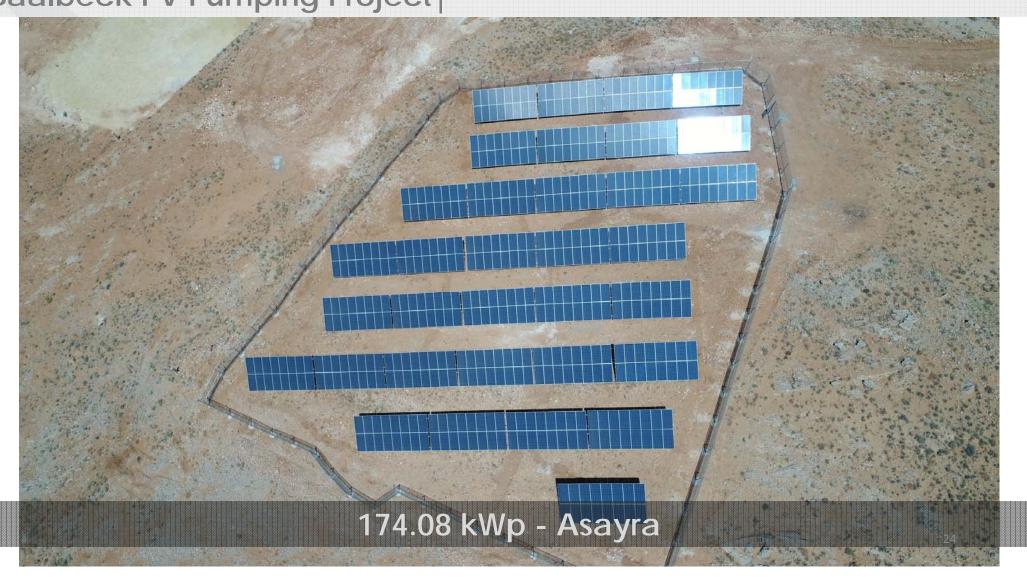


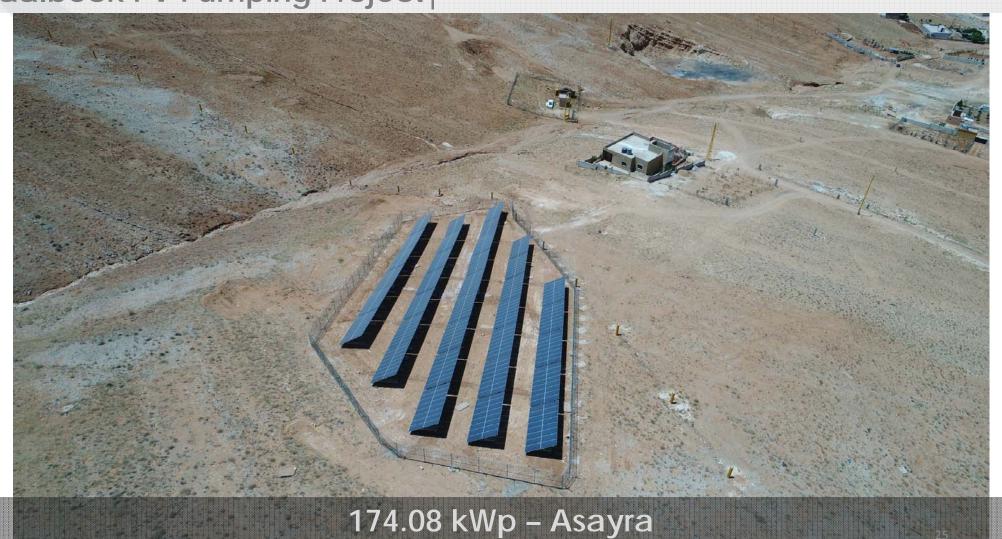



Ref. Location	Pump Size (Hp)	Total (kWp)
1 Magneh North	125	163.84
2 Magneh South	125	230.4
3 Douris	75	122.88
4 Younine	68	143.36
5 Al Maslaha	150	225.28
6 Al Maslakh	120	107.52
7 Asayra North	125	174.08
8 Asayra South	125	174.08
9 Majdaloun 1	7.5	20.48
10 Majdaloun 2	7.5	20.48
11 Hawsh Tal Safiyye	15	25.6
Total		1,408.00

Monthly Water Production from Solar Pumping per Site (m³/month)





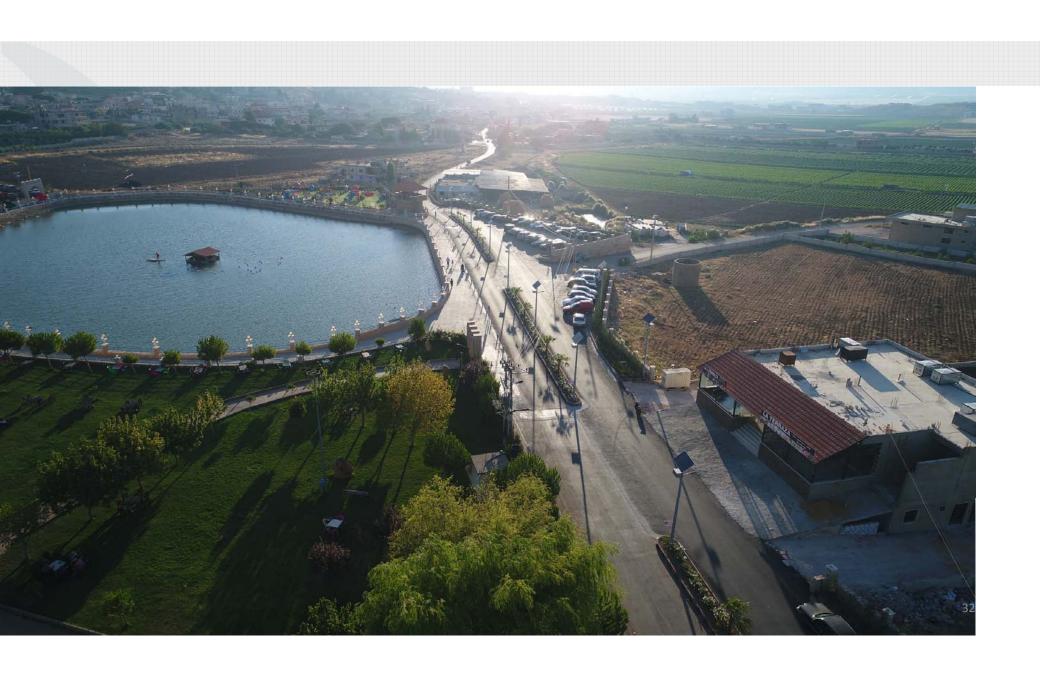


Solar Street Lighting Project

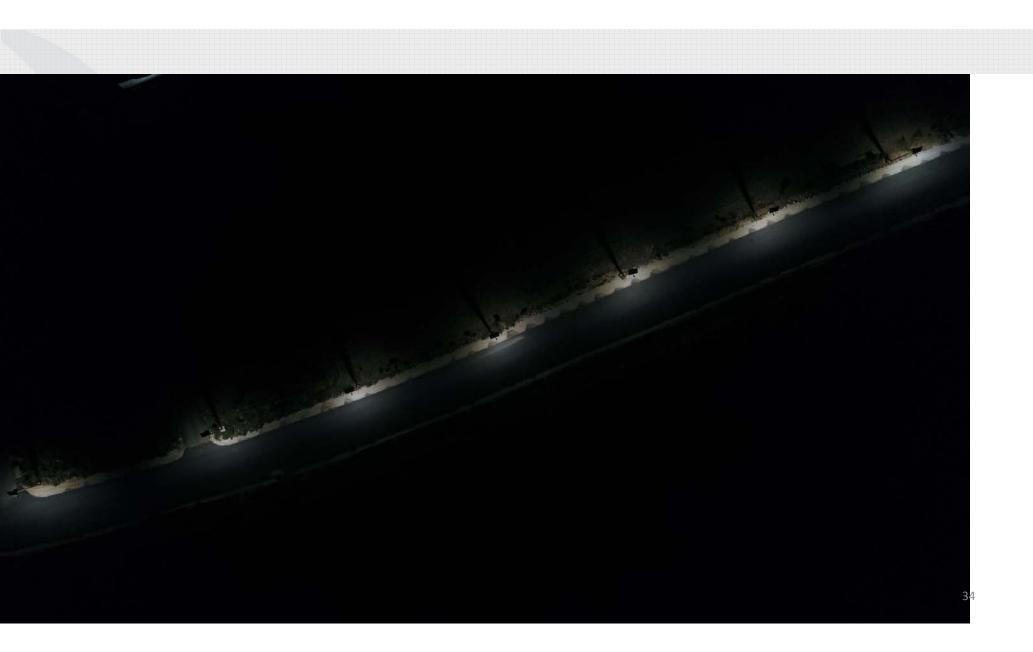
Components:

- Concrete base
- 1xPV Panel (265 Wp) + accessories
- **1xPole** (7m) Steel 4mm
- 1xCharge Controller + LED Driver
- 1xLED Lamp 60W at 6m or double headed
- 2xBatteries (12V 150Ah at C20) + accessories

Solar Street Lighting Project |


29

Solar Street Lighting Project



Solar Street Lighting Project |

Conclusion |

Solar photovoltaic distributed generation	Pessimistic			Realistic			Optimistic		
	MW	MWh	ktoe	MW	MWh	ktoe	MW	MWh	ktoe
Industrial sector	10	16,500	3.6	30	49,500	10.7	40	66,000	14.3
Commercial sector	25	41,250	8.9	40	66,000	14.3	60	99,000	21.4
Agriculture sector	5	8,250	1.8	10	16,500	3.6	20	33,000	7.1
Residential sector	5	8,250	1.8	10	16,500	3.6	20	33,000	7.1
Others (public, municipalities)	2	3,300	0.7	5	8,250	1.8	20	33,000	7.1
Public street lighting	3	4,950	1.1	5	8,250	1.8	10	16,500	3.6
TOTAL	50	82,500	17.8	100	165,000	35.6	170	280,500	60.6

1.4 MW Solar **Pumping** Project is equivalent to:

Pessimistic Target: 70%
Realistic Target: 28%
Optimistic Target: 7%

PV Street **Lighting** Project **213 kW** is equivalent to:

Pessimistic Target: 7%
Realistic Target: 4%
Optimistic Target: 2%

Thank you

